$\left[\mathrm{Hg}_{5}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{5}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{5}\right]$ AND $\left[\mathrm{Hg}_{5}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{5}\left(\mathrm{SO}_{4} \mathrm{H}\right)_{5}\right.$]: COMPOUNDS INVOLVING THE NEW TEN-MEMBERED RING SYSTEM ($\mathbf{H g - P})_{5}$

PAUL PERINGER* and JOHANN EICHBICHLER

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)
(Received August 4th, 1982)

Summary

The reaction of $\mathrm{HgX}_{2}\left(\mathrm{X}=\mathrm{O}_{3} \mathrm{SCF}_{3}, \frac{1}{2} \mathrm{SO}_{4}, \mathrm{OAc}\right)$ and dicyclohexylphosphine leads to phosphido-bridged ring pentamers $\left[\mathrm{Hg}_{5}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{5} \mathrm{X}_{5}\right], \mathrm{X}=\mathrm{O}_{3} \mathrm{SCF}_{3}, \mathrm{SO}_{4} \mathrm{H}$ or tetramers $\left[\mathrm{Hg}_{4}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{4}(\mathrm{OAc})_{4}\right.$] involving the ten-membered $(\mathrm{Hg}-\mathrm{P})_{5}$ or eightmembered $(\mathrm{Hg}-\mathrm{P})_{4}$ heterocycles. The ring size of these "macrocycles" is under thermodynamic control: The $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ bonding angles seem to depend on the ligating power of X . The ring structures were characterized by ${ }^{31} \mathrm{P}$ and ${ }^{199} \mathrm{Hg}$ NMR spectroscopy.

Introduction

Most of the phosphido bridged ring oligomers $\left[\mathrm{M}\left(\mu_{2}-\mathrm{PR}_{2}\right) \mathrm{L}_{m}\right]_{n}$ adopt a fourmembered structure $(\mathrm{M}-\mathrm{P})_{2}$ (a) [1-3]. In contrast few examples of six-membered

(a)

(b)

(c)

(d)
(substituents omitted)
ring trimers $(\mathrm{M}-\mathrm{P})_{3}$ (b) are known [4-8]. We reported recently on the first eight-membered ring structures $(\mathrm{M}-\mathrm{P})_{4}$ (c) present in the compounds $\left[\mathrm{Hg}_{4}\left(\mu_{2}-\right.\right.$ $\left.\mathrm{PR}_{2}\right) \mathrm{L}_{4}$] $(\mathrm{R}=\mathrm{Cy}$ or $\mathrm{Ph}, \mathrm{LH}=1,3$-bis(2-fluorophenyl)triazene) [8]. This paper describes the first ten-membered ring pentamers ($\mathrm{M}-\mathrm{P})_{5}(\mathrm{~d})$.

\qquad nennennenn

Fig. 1. (a) Experimental ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{Hg}_{5}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{5}\left(\mathrm{SO}_{4} \mathrm{H}\right)_{5}\right] ;$ (b) ${ }^{199} \mathrm{Hg}$ satellite pattern enlarged.

Results and discussion

Mercury(II) sulfate reacts quantitatively with dicyclohexylphosphine in methanol according to eq. 1. Although the acidity of secondary phosphines has been reported

$$
\begin{equation*}
\mathrm{HgSO}_{4}+\mathrm{Cy}_{2} \mathrm{PH} \rightarrow \mathrm{Cy}_{2} \mathrm{PHgSO}_{4} \mathrm{H} \tag{1}
\end{equation*}
$$

[9] to increase upon coordination to a metal centre, reaction 1 is clearly favoured by the strength of the mercury-phosphorus bond. The product readily dissolves in methanol. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{199} \mathrm{Hg}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are shown in Fig. 1 and 2. The complicated ${ }^{199} \mathrm{Hg}$ satellite pattern with an increased intensity, in the ${ }^{31} \mathrm{P}$ NMR spectrum, as well as the ${ }^{199} \mathrm{Hg}$ NMR spectrum consisting of a triplet with a fine structure, indicate an oligomeric $(\mathrm{Hg}-\mathrm{P})_{n}$ structure. The ${ }^{31} \mathrm{P}$ and ${ }^{199} \mathrm{Hg}$ NMR spectra

Fig. 2. Experimental ${ }^{199} \mathrm{Hg}\left\{{ }^{\prime} \mathrm{H}\right\}$ NMR spectrum of $\left\{\mathrm{Hg}_{5}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{5}\left(\mathrm{SO}_{4} \mathrm{H}\right)_{5}\right]$.
(b)

Fig. 3. (a) Calculated ${ }^{31} \mathrm{P}$ NMR spectrum for the $(\mathrm{Hg}-\mathrm{P})_{5}$ ring system of $\left[{ }^{199} \mathrm{Hg}_{1}\right]\left[\mathrm{Hg}_{5}\left(\mu_{2^{-}}\right.\right.$ $\left.\left.\mathrm{Cy}_{2} \mathrm{P}\right)_{5}\left(\mathrm{SO}_{4} \mathrm{H}\right)_{5}\right] ;$ (b) ${ }^{199} \mathrm{Hg}$ satellite pattern enlarged.
were found to be consistent with that calculated for the pentamer involving a $(\mathrm{Hg}-\mathrm{P})_{5}$ ring system: $\delta\left({ }^{31} \mathrm{P}\right) 64.3, \delta\left({ }^{199} \mathrm{Hg}\right) 1494,{ }^{1} J\left({ }^{199} \mathrm{Hg},{ }^{31} \mathrm{P}\right) 3165,{ }^{2} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right)$ $137,{ }^{3} J\left({ }^{199} \mathrm{Hg},{ }^{31} \mathrm{P}\right) 44,{ }^{4} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right) 3,{ }^{5} J\left({ }^{199} \mathrm{Hg},{ }^{31} \mathrm{P}\right) 19 ; 0.1 \mathrm{mmol} / \mathrm{cm}^{-3} \mathrm{MeOH}$.

Figures 3 and 4 show the ${ }^{31} \mathrm{P}$ and ${ }^{199} \mathrm{Hg}$ NMR spectra calculated for the isotopomer with one ${ }^{199} \mathrm{Hg}$ atom ($p_{1}=40.3 \%$, natural abundance of ${ }^{199} \mathrm{Hg}$: 16.8%). The other isotopomers containing ${ }^{199} \mathrm{Hg}$ atoms with a total propability of 20% are not resolved in the experimental ${ }^{31} \mathrm{P}$ NMR spectrum. No exchange processes involving the $\mathrm{Hg}-\mathrm{P}$ bonds occur on the NMR time scale at ambient temperature. The ($\mathrm{M}-\mathrm{P})_{5}$ heterocyclus was previously unknown for mercury and other metals.

The reaction of mercury(II) trifluoromethanesulfonate (as DMSO complex) and dicyclohexylphosphine in methanol similarly gives a quantitative yield of a colorless crystalline precipitate which analyzes for $\mathrm{Cy}_{2} \mathrm{PHgO}_{3} \mathrm{SCF}_{3}$ (eq. 2).
$\mathrm{Hg}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}+\mathrm{Cy}_{2} \mathrm{PH} \xrightarrow{\mathrm{MeOH}} \mathrm{Cy}_{2} \mathrm{PHgO}_{3} \mathrm{SCF}_{3}+\mathrm{HO}_{3} \mathrm{SCF}_{3}$
A second equivalent of $\mathrm{Cy}_{2} \mathrm{PH}$ does not give the corresponding symmetric compound $\mathrm{Hg}\left(\mathrm{PCy}_{2}\right)_{2}$ or coordination complexes $\left[\mathrm{Cy}_{2} \mathrm{PHg}\left(\mathrm{Cy}_{2} \mathrm{PH}\right)_{n}\right]\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)$. The

Fig. 4. Calculated ${ }^{199} \mathrm{Hg}$ NMR spectrum for the $(\mathrm{Hg}-\mathrm{P})_{5}$ ring system of $\left[{ }^{199} \mathrm{Hg}_{1}\right]\left[\mathrm{Hg}_{5}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{5}-\right.$ $\left.\left(\mathrm{SO}_{4} \mathrm{H}\right)_{5}\right]$.
reaction of mercury(II) trifluoromethanesulfonate and dicyclohexylphosphine in dichloromethane yields a clear solution. NMR spectroscopy reveals the existence of equilibrium 3. This equilibrium is far to the right, the components on the left hand
$\mathrm{Hg}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}+\mathrm{Cy}_{2} \mathrm{PH} \stackrel{\mathrm{CH}_{2} \mathrm{Cl}_{2}}{\rightleftharpoons} \mathrm{Cy}_{2} \mathrm{PHgO}_{3} \mathrm{SCF}_{3}+\mathrm{HO}_{3} \mathrm{SCF}_{3}$
side forming a coordination complex. Reaction 3 is shifted completely to the right upon addition of a base, such as HgO (eq. 4).
$\mathrm{Hg}\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}+\mathrm{HgO}+2 \mathrm{Cy}_{2} \mathrm{PH} \rightarrow 2 \mathrm{Cy}_{2} \mathrm{PHgO}_{3} \mathrm{SCF}_{3}+\mathrm{H}_{2} \mathrm{O}$
The ${ }^{31} \mathrm{P}$ and ${ }^{199} \mathrm{Hg}$ NMR spectra of $\mathrm{Cy}_{2} \mathrm{PHgO}_{3} \mathrm{SCF}_{3}$ again exhibit the pattern of the $(\mathrm{Hg}-\mathrm{P})_{5}$ ring system: $\delta\left({ }^{31} \mathrm{P}\right) 70.4, \delta\left({ }^{199} \mathrm{Hg}\right) 1531,{ }^{1} J\left({ }^{199} \mathrm{Hg},{ }^{31} \mathrm{P}\right) 3004,{ }^{2} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right)$ 136, ${ }^{3} J\left({ }^{199} \mathrm{Hg},{ }^{31} \mathrm{P}\right) 61,{ }^{4} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right) 2,{ }^{5} J\left({ }^{199} \mathrm{Hg},{ }^{31} \mathrm{P}\right) 27 ; 0.05 \mathrm{mmol} / \mathrm{cm}^{-3} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

On the other hand $\mathrm{Cy}_{2} \mathrm{PHgOAc}$ formed by reaction 5 in different solvents (e.g.

$$
\begin{equation*}
\mathrm{Hg}(\mathrm{OAc})_{2}+\mathrm{Cy}_{2} \mathrm{PH} \rightarrow \mathrm{Cy}_{2} \mathrm{PHgOAc}+\mathrm{HOAc} \tag{5}
\end{equation*}
$$

methanol or dichloromethane) has a tetrameric structure involving the eight-membered $(\mathrm{Hg}-\mathrm{P})_{4}$ ring, as shown by its ${ }^{31} \mathrm{P}\left\{{ }^{l} \mathrm{H}\right\}$ and ${ }^{199} \mathrm{Hg}\left\{{ }^{1} \mathrm{H}\right\}$ NMR patterns in Figs. 5 and 6: $\delta\left({ }^{31} \mathrm{P}\right) 55.4, \delta\left({ }^{199} \mathrm{Hg}\right) 1634,{ }^{1} J\left({ }^{199} \mathrm{Hg},{ }^{31} \mathrm{P}\right) 3237,{ }^{2} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right) 133,{ }^{3} J\left({ }^{199} \mathrm{Hg},{ }^{31} \mathrm{P}\right)$ $44,{ }^{4} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right)-0 ; 0.125 \mathrm{mmol} / \mathrm{cm}^{-3} \mathrm{MeOH}$. The ${ }^{31} \mathrm{P}$ NMR spectrum displays a ${ }^{199} \mathrm{Hg}$ satellite pattern characteristic of a $(\mathrm{Hg}-\mathrm{P})_{4}$ system [8]. The ${ }^{199} \mathrm{Hg}$ NMR spectrum consists of almost first order triplets of triplets due to the isotopomer with one ${ }^{199} \mathrm{Hg}$ atom coupling with 2 phosphorus atoms through one bond and with two phosphorus atoms through 3 bonds. Figures 7 and 8 show the ${ }^{31} \mathrm{P}$ and ${ }^{199} \mathrm{Hg}$ NMR spectra calculated for the isotopomer with one ${ }^{199} \mathrm{Hg}$ atom.

The ring sizes can be rationalized as follows: The $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ bonding angle in the

(e)
addition complexes $\left[\mathrm{HgX}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ (e) has been found to increase with decreasing ligating power of X [10,11]. A series of X -ray structure determinations on

\qquad
Fig. 5. (a) Experimental ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{Hg}_{4}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{4}(\mathrm{OAc})_{4}\right]$; (b) ${ }^{199} \mathrm{Hg}$ satellite pattern enlarged.

Fig. 6. Experimental ${ }^{199} \mathrm{Hg}\left\{{ }^{\prime} \mathrm{H}\right\}$ NMR spectrum of $\left\{\mathrm{Hg}_{4}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{4}(\mathrm{OAc})_{4}\right]$.
$\left[\mathrm{HgX}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ systems showed that the $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ angle decreases in the order $\mathrm{X}=\mathrm{NO}_{3}\left(132^{\circ}\right)>\mathrm{SCN}\left(118^{\circ}\right)>\mathrm{I}\left(109^{\circ}\right) \sim \mathrm{CN}\left(109^{\circ}\right)>\mathrm{CF}_{3}\left(95^{\circ}\right)$, i.e. in the order of increasing bond strength of $\mathrm{X}[10,12,13]$. A linear $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ configuration is assumed for cations $\left[\mathrm{Hg}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ with uncoordinated counterions [11]. $\left\lfloor\mathrm{Hg}\left(\mathrm{PCy}_{3}\right)_{2}\right\rfloor\left(\mathrm{ClO}_{4}\right)_{2}$ contains 2-coordinate mercury atoms ($\mathrm{P}-\mathrm{Hg}-\mathrm{P} 171^{\circ}$) and $\mathrm{Hg}-\mathrm{O}$ distances lying outside the sum of the Van der Waals radii (290 pm). In $\mathrm{Hg}\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$ the $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ bonding angle is considerably distorted from linearity (153 and 146°) and the acetate group is bound to mercury $(\mathrm{Hg}-\mathrm{O}: 245$ and 241 pm) [14].

A similar correlation should apply to the ring oligomers $\left(\mathrm{PR}_{2} \mathrm{HgX}\right)_{n}(\mathrm{f})$. The $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ bonding angles depending on X would thus result in different $(\mathrm{Hg}-\mathrm{P})_{n}$ ring sizes.

Trifluoromethanesuifonate and hydrogensulfate are both considered to be noncoordinating anions in $\mathrm{PCy}_{2} \mathrm{HgX}$ for the following reasons: $\left[\mathrm{Hg}(\mathrm{DMSO})_{6}\right]\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}$ and HgSO_{4} coordinate up to 4 molecules of tributylphosphine [15]. This is the maximum coordination number and is reached only for non-coordinating counter-

(a)
\qquad Mull lul_

Fig. 7. (a) Calculated ${ }^{31} \mathrm{P}$ NMR spectrum for the $(\mathrm{Hg}-\mathrm{P})_{4}$ ring system of $\left[{ }^{199} \mathrm{Hg}_{1}\right]\left[\mathrm{Hg}_{4}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{4}(\mathrm{OAc})_{4}\right]$; (b) ${ }^{199} \mathrm{Hg}$ satellite pattern enlarged.

Fig. 8. Calculated ${ }^{199} \mathrm{Hg}$ NMR spectrum for the $(\mathrm{Hg}-\mathrm{P})_{4}$ ring system of $\left[{ }^{199} \mathrm{Hg}_{1}\right]\left[\mathrm{Hg}_{4}\left(\mu_{2}-\mathrm{Cy}_{2} \mathrm{P}\right)_{4}\left(\mathrm{OAC}_{4}\right)_{4}\right]$.
ions [16]. Mercury(II) acetate coordinates only 3 molecules of PBu_{3}, which indicates the involvement of the acetate group in the coordination of mercury [16]. Secondly the one bond mercury-phosphorus coupling in $\left[\mathrm{HgX},\left(\mathrm{PR}_{3}\right)_{2}\right]$ has been correlated

(f)
with the $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ bonding angle: the coupling constant increases with increasing $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ angle in the order $\mathrm{CN}<\mathrm{I}<\mathrm{SCN}<\mathrm{OAc}_{\mathrm{O}}<\mathrm{NO}_{3}$ [10], but decreases for the even more linear species $\left[\mathrm{Hg}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ with non-coordinating anions [17]. The couplings of $\left[\mathrm{Hg}\left(\mathrm{PBu}_{3}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{X}=\mathrm{O}_{3} \mathrm{SCF}_{3}$ or ${ }_{2}^{\frac{1}{2}} \mathrm{SO}_{4}$ are both smaller than for $\mathrm{X}=\mathrm{OAc}$ indicating thus more linear $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ elements [15].

A linear $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ configuration in $\mathrm{Cy}_{2} \mathrm{PHgX}, \mathrm{X}=\mathrm{O}_{3} \mathrm{SCF}_{3}$ or $\mathrm{SO}_{4} \mathrm{H}$ is thus assumed and this would easily be accommodated in the ten-membered ring of type d , which combines a linear $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ element together with an approximately tetrahedral $\mathrm{Hg}-\mathrm{P}-\mathrm{Hg}$ angle (regular pentahedron: 108°).

Experimental

The NMR spectra were recorded on a multinuclear Bruker WP-80 spectrometer in the FT mode and calculated using PANIC on a Bruker Aspect 2000 computer. Chemical shifts are in ppm to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ or aqueous $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}$ ($2 \mathrm{mmol} \mathrm{HgO} / \mathrm{cm}^{-3} 60 \% \mathrm{HClO}_{4}$), coupling constants in Hz .
$\left[\mathrm{Hg}(\mathrm{DMSO})_{6}\right]\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}$ was prepared by a published method [18] and the other reagents were commercial obtained. All operations were carried out under nitrogen in degassed solvents.
$\mathrm{Cy}_{2} \mathrm{PHgO}_{3} \mathrm{SCF}_{3} .50 \mathrm{mg}(0.25 \mathrm{mmol})$ of dicyclohexylphosphine is added to a solution $242 \mathrm{mg}(0.25 \mathrm{mmol})$ of $\left[\mathrm{Hg}(\mathrm{DMSO})_{6}\right]\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}$ in $2 \mathrm{~cm}^{3}$ of methanol. The colorless crystalline product starts to precipitate immediately. After stirring the mixture for 30 minutes the product is filtered off and washed with methanol. Yield, almost quantitative, m.p. $285^{\circ} \mathrm{C}$ (dec.), Analysis. Found: C. 28.7; H, 4.4: $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{HgO}_{3} \mathrm{PS}$ calcd.: $\mathrm{C}, 28.5 ; \mathrm{H}, 4.1 \%$.
$C y_{2} \mathrm{PHgSO}_{4} \mathrm{H}$. Treatment of $74 \mathrm{mg}(0.25 \mathrm{mmol})$ of HgSO_{4} with 50 mg of dicyclohexylphosphine in $2 \mathrm{~cm}^{3}$ of methanol yields a clear solution of the product after shaking for 15 minutes. Evaporation of the solvent gives the required product as an oil.
$\mathrm{Cy}_{2} \mathrm{PHgOAc} .80 \mathrm{mg}(0.25 \mathrm{mmol})$ of $\mathrm{Hg}(\mathrm{OAc})_{2}$ and $50 \mathrm{mg}(0.25 \mathrm{mmol})$ of dicyclohexylphosphine are mixed in $2 \mathrm{~cm}^{3}$ of dichloromethane. Evaporation of the solvent yields a glassy solid which crystallizes upon addition of a few drops of pyridine. The product is filtered off and dried in vacuo. Yield ca. 90%, m.p. $140^{\circ} \mathrm{C}$ (dec.). Analysis. Found: $\mathrm{C}, 36.6 ; \mathrm{H}, 5.5 . \mathrm{C}_{14} \mathrm{H}_{25} \mathrm{HgO}_{2} \mathrm{P}$ calcd.: $\mathrm{C}, 36.8 ; \mathrm{H}, 5.5 \%$.

Acknowledgement

We thank the Fonds zur Förderung der Wissenschaft, Vienna, for making the n.m.r. spectrometer available to us.

References

1 C.A. McAuliffe and W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979.
2 C. Eaborn, K.J. Odell and A. Pidcock, J. Organometal. Chem., 170 (1979) 105.
3 J.B. Brandon and K.R. Dixon, Can. J. Chem., 59 (1981) 1188.
4 R.G. Hayter, Inorg. Chem., 2 (1963) 1031: R.G. Hayter J. Amer. Chem. Soc., 86 (1964) 823.
5 R.C. Dobie and D. Whittaker, J. Chem. Soc., Dalton Trans., (1973) 2427.
6 H. Schäfer, Z. Anorg, Allg. Chem., 459 (1979) 157.
7 S.J. Cartwright, K.R. Dixon and A.D. Rattray, Inorg. Chem., 19 (1980) 1120.
8 J. Eichbichler and P. Pcringer, J. Chem. Soc., Chem. Commun., (1982) 193.
9 P.M. Treichel, W.M. Douglas and W.K. Dean, Inorg. Chem., 11 (1972) 1615.
10 H.B. Buergi, R.W. Kunz and P.S. Pregosin, Inorg. Chem., 19 (1980) 3707.
11 N.A. Bell, T.D. Dee, P.L. Goggin, M. Goldstein, R.J. Goodfellow. T. Jones, K. Kessler, D.M. McEwan and I.W. Nowell, J. Chem. Research (M), (1981) 201.
12 L. Falth, Chem. Scripta, 9 (1976) 71.
13 D.J. Brauer, Abstr. Papers IXth Intern. Conf. Organometal. Chem., Dijon, 1979, B59.
14 E.C. Alyea, S.A. Dias, G. Ferguson and M.A. Khan, J. Chem. Research (S), (1979) 360.
15 P. Peringer, unpublished data.
16 R. Colton and D. Dakternieks, Aust. J. Chem., 34 (1981) 323.
17 E.C. Alyea, S.D. Dias, R.G. Goel, W.O. Ogini, P. Pilon and D.W. Meek, Inorg. Chem., 17 (1978) 1697.

18 P. Peringer, J. Inorg. Nucl. Chem., 42 (1980) 1501.

